

Emergence of Regional Jets and the Implications on Air Traffic Management

Aleksandra Mozdzanowska and R. John Hansman Massachusetts Institute of Technology January 10, 2003

Background and Motivation

- □ Airlines are buying regional jets to better better match aircraft size to high value demand markets
- □ This growth will accelerate as a result of of post 9/11 scope clause renegotiations
- This represents a major change from traditional traffic patterns
- The air traffic management system will have to adapt to these changes

Data

- □ Source: Aircraft Situational Display to Industry (ASDI); fed from Volpe
- □ Analyzed data set: all flight data for flights that departed between between midnight November 14th 2002 GMT and and November 15th GMT 2002

Regional Jet Trends

Growth in Regional Jets

- registration data between between 1993 and 2002
- Growth in registeredRJs is exponential

Utilization of Regional Jets

- Comparisonbetween1992 and2001
- Shows a change in the the composition and utilization of national fleet

Source: Regional Air Service Initiative

Distance Histogram

- Calculated as great circle distance between first and last update point
- Gap between regional regional and traditional jets is closing
- Average regional distance in 1998 was 375 miles compared to 424 miles here
- Means that regional jets and traditional jets are being used in the same ways

Traditional Jet Density

- Density covers the entire US
 - Light blue 1-2 flights
 - Dark red > 40 flights
- Concentrated at hubs
- Large number of transcontinental flights

Regional Jet Density

- High concentration of flights in the north north east
 - Light blue 1-2 flights
 - Dark red > 20 flights
- Concentrated at hubs
- Few transcontinental flights

Turboprop Density

- Fewer number of flights compared to to traditional and regional jets
 - Light blue 1-2 flights
 - Dark red > 10 flights
- Concentrated at hubs
- No transcontinental flights
- Few flights connecting hubs

Performance Implications

Airport Implications

- Regional jets and traditional jets compete for runway space, while turboprops can use shorter runways
- Regional jets have a longer ground roll than turboprops
- Increase in regional jets means an increase of operations for the same number of passengers

Atlanta Airport Surface Diagram

Newark Airport Surface Diagram

Implications at Cruise

- Regional jets and traditional jets share some high density flight routes
- The two types of jets perform differently differently at cruise

Altitude Histogram

- □ Turboprops cruise cruise lower than the jets, and have almost no interaction with them at cruise
- □ High level of interaction between regional jets and traditional traditional jets between 28,000 ft ft and 32,000 ft

Speed Histogram

□ Regional jets
 have an
 average cruise
 cruise speed
 that is lower
 than traditional
 traditional jets

Flights from CLE to ORD

- In a specific example regional regional and traditional jets have about the same speed
- This means that either the traditional jets are slowing down down or the regional jets are forced to fly above optimum cruise speed

Implications for the Terminal Area

Regional jets seem to climb slower than than traditional jets, which can pose problems for air traffic controllers

Flights from CLE to ORD

- □ Climb rate and slope below 10,000 ft are the the same for regional and traditional jets
- □ Above 10,000 ft ERJs emerge as having a slower climb rate and slope

Implications for Sector Structure

- Sectors
 currently
 designed to
 minimize
 handoffs
- Slower climb of regional jets may increase the handoffs

Conclusion

- □ Regional jets are increasingly common common in high traffic regions
- □ Performance differences lead to resource contention
- Contention may cause delays and increased complexity for controllers

Questions

Hub Concentration

Atlanta Hub

Cincinnati

- Atlanta is a regional and traditional jet hub
- Cincinnati is a regional jet hub